UR ACADEMY, BANGALORE

KCET 2023-24 Mathematics - Version D4

1. The value of C in $(0,2)$ satisfying the mean value theorem for the function $f(x)=x(x-1)^{2}, x \in[0,2]$ is equal to
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$

Ans: (B)
2. $\frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2}\left(\cot ^{-1} \sqrt{\frac{2+\mathrm{x}}{2-\mathrm{x}}}\right)\right]$ is
(A) $-\frac{3}{4}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Ans: (D)
3. For the function $f(x)=x^{3}-6 x^{2}+12 x-3 ; x=2$ is
(A) a point of minimum
(B) a point of inflexion
(C) not a critical point
(D) a point of maximum

Ans: (B)
4. The function $f(x)=|\cos x|$ is
(A) everywhere continuous and differentiable
(B) everywhere continuous but not differentiable at odd multiples of $\frac{\pi}{2}$
(C) neither continuous nor differentiable at $(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
(D) not differentiable everywhere

Ans: (B)
5. If $y=2 x^{3 x}$, then $\frac{d y}{d x}$ at $x=1$ is
(A) 2
(B) 6
(C) 3
(D) 1

Ans: (B)
6. Let the function satisfy the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$, where $f(0) \neq 0$. If $f(5)=3$ and $f^{\prime}(0)=2$, then $\mathrm{f}^{\prime}(5)$ is
(A) 6
(B) 0
(C) 5
(D) -6

Ans: (A)
7. $\int \frac{1}{x\left[6(\log x)^{2}+7 \log x+2\right]} d x=$
(A) $\frac{1}{2} \log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
(B) $\log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
(C) $\log \left|\frac{3 \log x+2}{2 \log x+1}\right|+C$
(D) $\frac{1}{2} \log \left|\frac{3 \log x+2}{2 \log x+1}\right|+C$

Ans: (B)
8. $\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$
(A) $2 \mathrm{x}+\sin \mathrm{x}+2 \sin 2 \mathrm{x}+\mathrm{C}$
(B) $x+2 \sin x+2 \sin 2 x+C$
(C) $x+2 \sin x+\sin 2 x+C$
(D) $2 x+\sin x+\sin 2 x+C$

Ans: (C)
9. $\int_{1}^{5}(|x-3|+|1-x|) d x=$
(A) 12
(B) $\frac{5}{6}$
(C) 21
(D) 10

Ans: (A)

10. $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots \ldots \ldots+\frac{1}{5 n}\right)=$
(A) $\frac{\pi}{4}$
(B) $\tan ^{-1} 3$
(C) $\tan ^{-1} 2$
(D) $\frac{\pi}{2}$

Ans: (C)
11. The area of the region bounded by the line $y=3 x$ and the curve $y=x^{2}$ in sq. units is
(A) 10
(B) $\frac{9}{2}$
(C) 9
(D) 5

Ans: (B)
12. The area of the region bounded by the line $y=x$ and the curve $y=x^{3}$ is
(A) 0.2 sq. units
(B) 0.3 sq. units
(C) 0.4 sq. units
(D) 0.5 sq. units

Ans: (D)

13. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and p, q, r are vectors defined by
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$, then
$(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$ is
(A) 0
(B) 1
(C) 2
(D) 3

Ans: (D)
14. If lines $\frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}-2}{2 \mathrm{k}}=\frac{\mathrm{z}-3}{2}$ and $\frac{\mathrm{x}-1}{3 \mathrm{k}}=\frac{\mathrm{y}-5}{1}=\frac{\mathrm{z}-6}{-5}$ are mutually perpendicular, then k is equal to
(A) $-\frac{10}{7}$
(B) $-\frac{7}{10}$
(C) -10
(D) -7

Ans: (A)
15. The distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
(A) 2 units
(B) 8 units
(C) $\frac{2}{\sqrt{29}}$ units
(D) 4 units

Ans: (C)
16. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{4-z}{-5}$ and the plane $2 x-2 y+z=5$ is
(A) $\frac{1}{5 \sqrt{2}}$
(B) $\frac{2}{5 \sqrt{2}}$
(C) $\frac{3}{50}$
(D) $\frac{3}{\sqrt{50}}$

Ans: (A)
17. The equation $\mathrm{xy}=0$ in three-dimensional space represents
(A) a pair of straight lines
(B) a plane
(C) a pair of planes at right angles
(D) a pair of parallel planes

Ans: (C)
18. The plane containing the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is
(A) $x-y+z=1$
(B) $x+y+z=5$
(C) $x+2 y-z=1$
(D) $2 x-y+z=5$

Ans: (A)
19. Corner points of the feasible region for un LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $z=4 x+6 y$ be the objective function. The minimum value of z occurs at
(A) Only $(0,2)$
(B) Only $(3,0)$
(C) The mid-point of the line segment joining the points $(0,2)$ and $(3,0)$
(D) Any point on the line segment joining the points $(0,2)$ and $(3,0)$

Ans: (D)
20. A die is thrown 10 times. The probability that an odd number will come up at least once is
(A) $\frac{11}{1024}$
(B) $\frac{1013}{1024}$
(C) $\frac{1023}{1024}$
(D) $\frac{1}{1024}$

Ans: (C)
21. A random variable X has the following probability distribution:

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{25}{36}$	k	$\frac{1}{36}$

If the mean of the random variable X is $\frac{1}{3}$, then the variance is
(A) $\frac{1}{18}$
(B) $\frac{5}{18}$
(C) $\frac{7}{18}$
(D) $\frac{11}{18}$

Ans: (B)

22. If a random variable X follows the binomial distribution with parameters $n=5, p$ and $P(X=2)=9 P(X=3)$, then p is equal to
(A) 10
(B) $\frac{1}{10}$
(C) 5
(D) $\frac{1}{5}$

Ans: (B)
23. Two finite sets have m and n elements respectively. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are
(A) 7,6
(B) 5,1
(C) 6,3
(D) 8,7

Ans: (C)
24. If $|x|^{2}-5|x|+6=0$, where $|x|$ denotes the greatest integer function, then
(A) $x \in[3,4]$
(B) $x \in[2,4)$
(C) $x \in[2,3]$
(D) $x \in(2,3]$

Ans: (B)
25. If in two circles, arcs of the same length subtend angles 30° and 78° at the centre, then the ratio of their radii is
(A) $\frac{5}{13}$
(B) $\frac{13}{5}$
(C) $\frac{13}{4}$
(D) $\frac{4}{13}$

Ans: (B)

26. If $\Delta \mathrm{ABC}$ is right angled at C , then the value of $\tan \mathrm{A}+\tan \mathrm{B}$ is
(A) $a+b$
(B) $\frac{a^{2}}{b c}$
(C) $\frac{c^{2}}{a b}$
(D) $\frac{\mathrm{b}^{2}}{\mathrm{ac}}$

Ans: (C)
27. The real value of ' α ' for which $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real is
(A) $(\mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$
(B) $(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$
(C) $n \pi, \mathrm{n} \in \mathbb{N}$
(D) $(2 \mathrm{n}-1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$

Ans: (C)
28. The length of a rectangle is five times the breadth. If the minimum perimeter of the rectangle is 180 cm , then
(A) Breadth $\leq 15 \mathrm{~cm}$
(B) Breadth $\geq 15 \mathrm{~cm}$
(C) Length $\leq 15 \mathrm{~cm}$
(D) Length $=15 \mathrm{~cm}$

Ans: (B)
29. The value of ${ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{4}$ is
(A) ${ }^{50} \mathrm{C}_{4}$
(B) ${ }^{50} \mathrm{C}_{3}$
(C) ${ }^{50} \mathrm{C}_{2}$
(D) ${ }^{50} \mathrm{C}_{1}$

Ans: (A)
30. In the expansion of $(1+x)^{n} \frac{C_{1}}{C_{0}}+2 \frac{C_{2}}{C_{1}}+3 \frac{C_{3}}{C_{2}}+\ldots .+n \frac{C_{n}}{C_{n-1}}$ is equal to
(A) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(B) $\frac{\mathrm{n}}{2}$
(C) $\frac{\mathrm{n}+1}{2}$
(D) $3 n(n+1)$

Ans: (A)
31. If S_{n} stands for sum to n-terms of a G.P. with ' a ' as the first term and ' r ' as the common ratio then S_{n} : $S_{2 n}$ is
(A) $r^{n}+1$
(B) $\frac{1}{\mathrm{r}^{\mathrm{n}}+1}$
(C) $\mathrm{r}^{\mathrm{n}}-1$
(D) $\frac{1}{\mathrm{r}^{\mathrm{n}}-1}$

Ans: (B)
32. If AM. and G.M. of roots of a quadratic equation are 5 and 4 respectively, then the quadratic equation is
(A) $x^{2}-10 x-16=0$
(B) $x^{2}+10 x+16=0$
(C) $x^{2}+10 x-16=0$
(D) $\mathrm{x}^{2}-10 \mathrm{x}+16=0$

Ans: (D)
33. The angle between the line $x+y=3$ and the line joining the points $(1,1)$ and $(-3,4)$ is
(A) $\tan ^{-1}$ (7)
(B) $\tan ^{-1}\left(-\frac{1}{7}\right)$
(C) $\tan ^{-1}\left(\frac{1}{7}\right)$
(D) $\tan ^{-1}\left(\frac{2}{7}\right)$

Ans: (C)
34. The equation of parabola whose focus is $(6,0)$ and directrix is $x=-6$ is
(A) $y^{2}=24 x$
(B) $y^{2}=-24 x$
(C) $x^{2}=24 y$
(D) $x^{2}=-24 y$

Ans: (A)
35. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to
(A) 2
(B) $\sqrt{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{\sqrt{2}}$

Ans: (C)
36. The negation of the statement
"For every real number $x ; x^{2}+5$ is positive" is
(A) For every real number $x ; x^{2}+5$ is not positive.
(B) For every real number x; $x^{2}+5$ is negative.
(C) There exists at least one real number x such that $x^{2}+5$ is not positive.
(D) There exists at least one real number x such that $x^{2}+5$ is positive.

Ans: (C)
37. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e be the observations with mean m and standard deviation S . The standard deviation of the observations $\mathrm{a}+\mathrm{k}, \mathrm{b}+\mathrm{k}, \mathrm{c}+\mathrm{k}, \mathrm{d}+\mathrm{k}$ and $\mathrm{e}+\mathrm{k}$ is
(A) kS
(B) $\mathrm{S}+\mathrm{k}$
(C) $\frac{\mathrm{S}}{\mathrm{k}}$
(D) S

Ans: (D)
38. Let $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then $f^{-1}(1)$ is
(A) $\frac{\pi}{4}$
(B) $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
(C) $\frac{\pi}{3}$
(D) $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$

Ans: (B)
39. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$. Then the pre images of 17 and -3 respectively are
(A) $\phi,\{4,-4\}$
(B) $\{3,-3\}, \phi$
(C) $\{4,-4\}, \phi$
(D) $\{4,-4\},\{2,-2\}$

Ans: (C)

40. Let $(\operatorname{gof})(x)=\sin x$ and $(f o g)(x)=(\sin \sqrt{x})^{2}$. Then
(A) $f(x)=\sin ^{2} x, g(x)=x$
(B) $f(x)=\sin \sqrt{x}, g(x)=\sqrt{x}$
(C) $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
(D) $f(x)=\sin \sqrt{x}, g(x)=x^{2}$

Ans: (C)
41. Let $\mathrm{A}=\{2,3,4,5, \ldots \ldots 16,17,18\}$. Let R be the relation on the set A of ordered pairs of positive integers defined by $(a, b) R(c, d)$ if and only $a d=b c$ for all $(a, b),(c, d)$ in $A \times A$. Then the number of ordered pairs of the equivalence class of $(3,2)$ is
(A) 4
(B) 5
(C) 6
(D) 7

Ans: (C)
42. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then $x(y+z)+y(z+x)+z(x+y)$ equals to
(A) 0
(B) 1
(C) 6
(D) 12

Ans: (C)
43. If $2 \sin ^{-1} x-3 \cos ^{-1} x=4, x \in[1,1]$ then $2 \sin ^{-1} x+3 \cos ^{-1} x$ is equal to
(A) $\frac{4-6 \pi}{5}$
(B) $\frac{\pi-4}{5}$
(C) $\frac{3 \pi}{2}$
(D) 0

Ans: (B)
44. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}$ is equal to
(A) $7 \mathrm{~A}-\mathrm{I}$
(B) 7 A
(C) $7 \mathrm{~A}+\mathrm{I}$
(D) $\mathrm{I}-7 \mathrm{~A}$

Ans: (C)
45. If $\mathrm{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then A^{10} is equal to
(A) $2^{8} \mathrm{~A}$
(B) $2^{9} \mathrm{~A}$
(C) $2^{10} \mathrm{~A}$
(D) $2^{11} \mathrm{~A}$

Ans: (B)
46. If $f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 2 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|$, then $f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)$ is
(A) -1
(B) 0
(C) 1
(D) 2

Ans: (GRACE)

47. Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=$
(A) -1
(B) 0
(C) 3
(D) 2

Ans: (B)
48. Which one of the following observations is correct for the features of logarithm function to any base $\mathrm{b}>1$?
(A) The domain of the logarithm function is R, the set of real numbers.
(B) The range of the logarithm function is R^{+}, the set of all positive real numbers.
(C) The point $(1,0)$ is always on the graph of the logarithm function.
(D) The graph of the logarithm function is decreasing as we move from left to right.

Ans: (C)
49. If $\mathrm{P}=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|\mathrm{A}|=4$, then α is equal to
(A) 4
(B) 5
(C) 11
(D) 0

Ans: (C)
50. If $A=\left|\begin{array}{cc}x & 1 \\ 1 & x\end{array}\right|$ and $B=\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$, then $\frac{d B}{d x}$ is
(A) 3 A
(B) -3 B
(C) $3 \mathrm{~B}+1$
(D) $1-3 \mathrm{~A}$

Ans: (A)
51. If $f(x)=x e^{x(1-x)}$ then $f(x)$ is
(A) increasing in \mathbb{R}
(B) decreasing in \mathbb{R}
(C) decreasing in $\left[-\frac{1}{2}, 1\right]$
(D) increasing in $\left[-\frac{1}{2}, 1\right]$

Ans: (D)
52. $\int \frac{\sin \mathrm{x}}{3+4 \cos ^{2} \mathrm{x}} \mathrm{dx}=$
(A) $-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$
(B) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\cos x}{3}\right)+C$
(C) $\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{\cos \mathrm{x}}{3}\right)+\mathrm{C}$
(D) $-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{3}\right)+\mathrm{C}$

Ans: (A)
53. $\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x d x=$
(A) $\pi-\frac{\pi^{2}}{3}$
(B) $2 \pi-\pi^{3}$
(C) $\pi-\frac{\pi^{3}}{2}$
(D) 0

Ans: (D)
54. The function $\mathrm{x}^{\mathrm{x}} ; \mathrm{x}>0$ is strictly increasing at
(A) $\forall x \in \mathbb{R}$
(B) $\mathrm{x}<\frac{1}{\mathrm{e}}$
(C) $\mathrm{x}>\frac{1}{\mathrm{e}}$
(D) $\mathrm{x}<0$

Ans: (C)
55. The maximum volume of the right circular cone with slant height 6 unit is
(A) $4 \sqrt{3} \pi$ cubic units
(B) $16 \sqrt{3} \pi$ cubic units
(C) $3 \sqrt{3} \pi$ cubic units
(D) $6 \sqrt{3} \pi$ cubic units

Ans: (B)

56. The vectors $\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ are the sides of a $\triangle \mathrm{ABC}$. The length of the median through A is
(A) $\sqrt{18}$
(B) $\sqrt{72}$
(C) $\sqrt{33}$
(D) $\sqrt{288}$

Ans: (C)
57. The volume of the parallelopiped whose co-terminous edges are $\hat{j}+\hat{k}, \hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$ is
(A) 6 cu. units
(B) 2 cu. units
(C) 5 cu. units
(D) 3 cu . Units

Ans: (B)
58. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{2 \pi}{3}$
(D) $\theta=\frac{\pi}{2}$

Ans: (C)
59. The solution of $e^{\frac{d y}{d x}}=x+1, y(0)=3$ is
(A) $y-2=x \log x-x$
(B) $y-x-3=x \log x$
(C) $y-x-3=(x+1) \log (x+1)$
(D) $y+x-3=(x+1) \log (x+1)$

Ans: (D)

60. The family of curves whose x and y intercepts of a tangent at any point are respectively double the x and y coordinates of that point is
(A) $x y=C$
(B) $x^{2}+y^{2}=C$
(C) $x^{2}-y^{2}=C$
(D) $\frac{y}{x}=C$

Ans: (A)

